


Magnesium Aluminate Spinels

Spinel AR 90 L 10 µm

Alumina-Rich Spinel AR 78

Chemical Composition [%]	Typical	All s	izes ³⁾	- 20	micron	
		Min	Max	Min	Max	
Al ₂ O ₃ by difference		74.0		74.0		
MgO	22.5	20.5	24.0	20.5	24.0	
CaO	0.24		0.30		0.30	
SiO ₂	0.10		0.15		0.20	
Na ₂ O	0.09		0.32		0.32	
Fe ₂ O ₃	0.15		0.25		0.25	
Fe Magnetic	0.005		0.02		0.02	

Physical Properties				
Bulk Specific Gravity [g/cm³]	3.3	3.2	3.2	
Apparent Porosity [%]	1.8	2.6	2.6	
Water Absorption [%]	0.5	0.8	0.8	

All data are based upon Almatis standard test methods.

Particle Size Distribution

DIN ⁴⁾ [mm]	Typical [%]	Min/Max [%]
0.5 - 1 mm		
+ 1.00 mm	3	0-5
+ 0.71 mm	47	
+ 0.50 mm	43	
- 0.50 mm	7	0-10
0 - 0.5 mm		
+ 0.50 mm	5	0-10
+ 0.25 mm	41	
+ 0.125 mm	25	
+ 0.063 mm	13	
+ 0.045 mm	5	
- 0.045 mm	11	

DIN ⁴⁾ [mm]	Typical [%]	Min/Max [%]
- 90 micron		
+ 0.090 mm	5	0-10
+ 0.063 mm	8	
- 0.063 mm	87	
d50 ⁵⁾	22 [µm]	16-32[μm]
- 45 micron		
+ 0.045 mm	3	0-10
d50 ⁵⁾	11 [μm]	5-16[µm]
- 20 micron		
+ 0.020 mm	3	max.7
d50 ⁵⁾	2.0 [µm]	3.0 [µm]

The typical product properties are based upon the actual averages from product data. The Min/Max data show our standard product specification data for these products. Other sizes are available upon request.

³⁾ All sizes excluding - 20 micron

⁴⁾ Sieve analysis as per DIN/ISO 3310/1

⁵⁾ Cilas Granulometer 1064

Alumina-Rich Spinel AR 90

Chemical Composition [%]	Typical	Min	Max	
Al ₂ O ₃ by difference		87.0		
MgO	9.5	8.0	11.0	
CaO	0.14		0.25	
SiO ₂	0.06		0.18	
Na ₂ O	0.15		0.38	
Fe ₂ O ₃	0.06		0.17	
Fe Magnetic	0.005		0.02	

Physical Properties				
Bulk Specific Gravity [g/cm³]	3.4	3.3		
Apparent Porosity [%]	2.0		3.0	
Water Absorption [%]	0.6		0.9	

All data are based upon Almatis standard test methods.

Particle Size Distribution

DIN ⁶⁾ [mm]	Typical [%]	Min/Max [%]
3 - 6 mm		
+ 6.30 mm	1	0-10
+ 5.00 mm	27	
+ 4.00 mm	40	
+ 3.35 mm	24	
- 3.35 mm	8	0-10
1 - 3 mm		
+ 3.35 mm	2	0-10
+ 2.00 mm	48	
+ 1.40 mm	27	
+ 1.00 mm	18	
- 1.00 mm	5	0-10

DIN ⁶⁾ [mm]	Typical [%]	Min/Max [%]
0.5 - 1 mm		
+ 1.00 mm	2	0-10
+ 0.71 mm	46	
+ 0.50 mm	46	
- 0.50 mm	6	0-10
0 - 0.5 mm		
+ 0.50 mm	5	0-10
+ 0.25 mm	43	
+ 0.125 mm	22	
+ 0.063 mm	13	
+ 0.045 mm	6	
- 0.045 mm	11	

The typical product properties are based upon the actual averages from product data. The Min/Max data show our standard product specification data for these products. Other sizes are available upon request.

⁶⁾ Sieve analysis as per DIN/ISO 3310/1

Magnesium Aluminate Spinels

Product Information

Manufactured from high purity raw materials, Magnesium Aluminate Spinel has excellent refractory properties and is recognized as a superior refractory aggregate.

The development of spinel has followed two distinct paths as prescribed by these two separate industry needs: magnesia-rich spinel products for use with magnesia-based bodies and alumina-rich spinel for use with alumina bodies.

Almatis Alumina-Rich Spinels AR 78 and AR 90

Almatis Spinels AR 78 and AR 90 are eminently suitable for castables in steel ladles. It is generally agreed that the spinel content of such castables should be in the order of 15-30%. AR 78 and AR 90 are distinguished by their chemistries (78% and 90% alumina respectively). They are available in a variety of closely controlled sizes, from -20 micron to 3-6 mm. Within spinel containing refractory formulations AR 78 is preferably used for the fines to the medium sized fractions, whereas AR 90 shows most benefit when used in the medium to coarse size grain fractions.

Laboratory investigations and market experiences show that spinel addition to aluminous refractory bodies, prefired shapes, and monolithics considerably improve their resistance to slag attack and their thermal shock resistance.

The hot modulus of rupture and the thermo-mechanical strength can be increased considerably by addition of aluminarich spinel to the mix.

Magnesium Aluminate Spinels

Packaging

- Bags: 25 kg
- · Big bags

- · Bulk shipments
- · Special packaging on request

Contacts for sales, technical information and application assistance

Almatis GmbH

Giulinistrasse 2 67065 Ludwigshafen Germany

49 621 5707 0 ® 49 621 5707 130

Almatis Limited

Morimura Bldg. Toranomon Tower Office 13 F 1-28, Toranomon 4-chrome Minato-ku, Tokyo 105-8451 Japan

81 3 3432 6121 ® 81 3 3432 6125

Almatis B.V.

Theemsweg 30 3197KM Botlek RT The Netherlands

□ 31 181 2701 **0**

® 31 181 2178 53

Qingdao Almatis Co. Ltd. No.1 Songhuajiang Road Qingdao Economic & Technology Development Zone Qingdao, 266510 P.R. China

□ 86 532 8695 7300 ® 86 532 8676 3270

Almatis, Inc.

501 West Park Road Leetsdale, PA 15056, USA

□ 800 643 8771 General 1 412 630 2800

® 1 412 630 2900

Almatis Singapore Pte. Ltd.

300. Tampines Ave 5 #09-02 Singapore 529653 Singapore

□ 65 9049 6123 ® 65 9049 6123

Almatis Alumina

Private Limited

Kankaria Estate. 2nd Floor 6. Little Russell Street Kolkata 700-071,

91 33 2289 4694 ® 91 33 2289 4693

Almatis do Brasil Ltda.

Avenida Jose de Souza Campos, 243 2° Andar - Cambuí 13025-320 - Campinas,

SP - Brasil

□ 55 19 3515-1400 ® 55 19 3515-1410

SDS 340

⚠ ALMATIS

Almatis GmbH Lyoner Straße 9 60528 Frankfurt/Germany

Phone 49 69 957 341 0 49 69 957 341 13

info@almatis.com www.almatis.com